Investigation 2 Check Up Topics

- Understand the following terms. Be able to decide of a situation is:
 a. Possible
 - b. Probable
 - c. Equally Likely
 - d. Not Equally Likely
- 2. Understand that the sum of the probability that an event will happen and the probability that an event will not happen is 1.
- 3. Understand that experimental probability is the ratio of favorable outcomes to total trials.
- 4. Understand that theoretical probability is the ratio of the number of ways an event can happen to the total amount of outcomes.
- Understand that probability is expressed as a number 0 to 1:
 a. If P=0, the event is impossible.
 - b. If P=1, the event will definitely happen.
 - c. If 0<P<1 (probability is between 0 and 1), the event may or may not happen.
- 6. Calculate experimental and theoretical probability from a set of data.
- 7. Compare and contrast experimental and theoretical probabilities.

Investigation 2 Check Up Review

I rolled a fair 6-sided number cube and tossed a coin 12 times and recorded the results in the following table:

Trial #	1	2	3	4	5	6	7	8	9	10	11	12
Number	4	1	5	1	2	4	2	2	5	2	4	3
Coin	н	н	т	т	т	т	т	н	н	т	н	т

1. Are all outcomes equally likely? Explain.

Yes. All numbers on a fair die are equally likely, and heads or tails is equally likely on a fair coin. There is only one way to get a 5 and heads, only one way to get a 3 and tails, etc... All outcomes have the same theoretical probability.

2. Is it **possible** to roll 12 sixes in a row? Explain. *It is possible since all numbers 1-6 have an equal chance of being rolled. Each time the die is rolled, there is a % probability that a 6 will be rolled.*

3. Is it **probable** to roll 12 sixes in a row? Explain.

It is not probable to roll 12 sixes in a row. Each roll only has a % chance of being a 6. Getting 12 straight 6s would be unlikely, but it is possible.

4. What is the **experimental** probability of getting a 4 and heads? *This occurred twice out of 12 trials, so P(4 & H)* = $\frac{2}{12}$

5. What is the **theoretical** probability of getting a 4 and heads?

6. Compare your experimental and theoretical probabilities.

The experimental probability was 2/12 but the theoretical probability was 1/12. I would most likely get a four and heads once every twelve rolls, but this happened twice during my trial.

7. What could be done to make this a more accurate experiment? *Increase the number of trials. 12 trials is not enough to get accurate data.*

8. What is the theoretical probability of <u>NOT</u> getting a 4 and heads? $\frac{12}{12} - \frac{1}{12} = \frac{11}{12} \quad P(NOT \ 4 \ \& \ H) = \frac{11}{12}$

9. What is the theoretical probability of rolling a 7? This is impossible so P(7) = 0

10. What is the theoretical probability of rolling a number less than 7? *This will definitely happen, so P(number<7) = 1*

11. If the probability that an event will not occur is %, then the probability that an event will occur is 1/5 because the sum of the two probabilities is 1.